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Spontaneous magnetization in the disorder-dominated phase 
of the two-dimensional random-bond king model 

D Braak 
lnstiluf Nr Thwrie der Kondensienen Materie. Universitu Kmls~he, Physikhochhaua, 
a 7 5 0 0  Kmlsruhe, Federal Republic of Ge3many 

Received 26 April 1993. in final form 4 OEtOber 1993 

AbstraQ The selfconsistent apprmh lo the Wodimensional lsing model with quenched 
randam bonds is extended to the full lattice Wry desnibed by fow real fermions. A calculation 
of the averaged spin-spin correlation function f a  large separation of the spins in the disorder- 
dominated phase indicates an exponential decay of this quantity and therefore a vanishing 
spontaneous magnetization. The corresponding correlation length is proportional to I/?)’, where 
q denotes the order paramew of the new phase i n m d w d  by Ziegler. 

1. Introduction 

The 2D Ising model [I]. defined on a square lattice with quenched disorder in the 
ferromagnetic bonds, is defined via the Hamiltonian 

1 
H = -- J ( i ,  j ) S i S j .  

ksT (i.i) 

- 
The bond strengths are ferromagnetic random variables 0 -= J ( i ,  j )  and J ( i ,  j )  = Jo; ( i .  j )  
is a pair of nearest-neighbour sites. 

Whereas it is well confirmed that thii system undergoes a phase transition to a 
ferromagnetic ordered state at a critical temperature lower than that of the pure system, 
the nature of the transition is not completely understood because of the non-applicability of 
the Harris criterion and also because of several conflicting analytical results l2-41. The only 
exactly solvable model for a disordered ferromagnet is the McCoy-Wu model [5],  where. 
the disorder is essentially one-dimensional. For a model with isotropic disorder, the famous 
analysis by Dotsenko and Dotsenko 141 mapped the system onto the N = 0 Gross-Neveu 
model to get the averaged thermodynamic quantities. This is possible because of the free 
fermion representation of the pure model. The authors used the replica trick and acontinuum 
field theory, which was analysed with the momentum-space renormalization-group (RG) 
technique. This model is asymptotically free in the infrared, the coupling g (= disorder 
strength) is marginal irrelevant, the phase diagram is not changed and the specific h a t  
diverges at the critical point but more slowly than in the pure model (E Ioglog(1T - Tcl-’) 
versus log(lT - TJI)). The averaged spin comlation function (SOS,) shows a dramatic 
change, namely, a slow decay: 0 exp(-$loglogn)*). The disorder seems to 
enhance the correlations instead of destroying them; the critical exponent goes from 
to zero. 
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An altemative approach uses the bosonized version of the pure model, which makes 
the spin operators local 16-81, The disorder is treated with the same method as in [4]. The 
results confirm the behaviour of the specific heat but predict only logarithmic corrections 
to the correlation exponent. An equivalent way is to take advantage of the conformal 
invariance of the pure model [9]. All these methods suffer from two difficulties: first, 
the replica trick is used and, second, they start from the continuum limit associated with 
the supposed critical point. Now there exists an altemative to the replica trick, through 
a supersymmetric version of the effective model [3, IO]. This is important because the 
replica trick is questionable in our case [ 1 I ,  121. In fact, [IO] performs a RG analysis of this 
model and [3] calculates the saddle-point structure of the theory after a transformation to 
composite operators (Q-matrices). Both [3] and [IO] show finite specific heat in the critical 
region. Whereas the RG treatment in [lo] lacks the correct incorporation of the additive 
renormalization crucial to extensive quantities [3,13] shows that in the critical region a 
new saddle point becomes stable and govems the thermodynamic behaviour of the effective 
model. This saddle point is accompanied by spontaneous symmetry breaking and a new 
phase between the ferro- and paramagnetic one. The corresponding order parameter stems 
from a regularization term needed for the boson integration in the supersymmetric theory 
[3,10]. The non-vanishing of the order parameter can be proven rigorously [ 14,151, but 
there exist two regularizations corresponding to different physical situations, one to the 
random-bond king model, the other to a system of polymer chains [12]. 

All investigations mentioned so far use a large-scale approximation where two of four 
IatIice-fermion degrees of freedom are ignored. The RG approaches do need the continuum 
limit. The difficulty of the continuum limit is connected with the fact that the renormalization 
procedure and the bosonization are not interchangeable. This is the ‘technical’ reason for 
the discrepancy between the findings of [4] and those of [5-71 regarding the spin correlation 
function 1161. 

It seems worthwile, therefore, to extract as much information on magnetic correlations 
as possible without using the large-scale approximation. This is the aim of the present 
paper. Moreover, the technique used avoids both the replica trick and the supersymmetric 
theory, staying close to the original model by direct average of the Green function in the 
framework of the 1/N expansion [Z]. The parameter N serves as a bookkeeping device to 
derive a self-consistent theory which contains the tadpole stmcture completely (section 2). 
The diagrammatic expansion builds a bridge between the Q-matrix approach and the RG 
calculations by comparing the classes of Feynman diagrams which are accounted for. The 
tadpoles are usually omitted in field-theoretical investigations because they can be treated 
by normal ordering. But this may be dangerous if one does not know the vacuum structure. 
i.e. the phase diagram. With the full 4-fermion lattice theory one can identify the diagrams 
which yield a second-order contribution in the coupling to an ‘exceptional’ mass term (see 
section 2), which tums out to be equivalent to the regularization term in [3]. Eventually, 
this term (the order parameter of the new phase) cannot be viewed as an artefact of the 
supersymmetric theory. But the main reason to consider the full theoty is the possibility of 
calculating magnetic correlations which are the subject of the many computer simulations 
performed on the model [17-191. These show very good agreement with the thermodynamic 
predictions of [3] (see also [Z]; an experimental result for the specific heat is also available 
[ZOl). 

The disorder average of the square of the spontaneous magnetization in the new phase is 
now calculated in section 3. This is done by determination of the averaged spin correlation 
function for large separation of the spins (section 3). This quantity is related to the 
averaged square of the extensive spontaneous magnetization, i.e. = (Ci(Si))z, which 
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is translationally invariant before the disorder average, by means of a Griffith inequality 
[21] and the cluster property [21,22] together with the hypothesis of self-averaging of M. 
(The spin correlation function itself, whose first moment is calculated in th is  paper, does 
not need to be self-averaging [91. But the exponential decay of magnetic correlations (SiS,) 
is sufficient for the conclusion that M vanishes in afuced sample in the thermodynamic 
limit.) Even if the cluster property is questionable [22], our result (M = 0) i s  not af€ected 
by this. However, ;i?i should not be confused with the EdwardsAnderson order parameter 
for spin glasses 1221: (Si)*. a local quantity, which becomes translationally invariant after 
averaging over disorder. Therefore, the present methods do not allow an estimate of this 
important quantity in the new phase. We use Gaussian disorder to simplify the calculations 
although a bounded distribution of the bond strength is necessary to keep all the bonds 
ferromagnetic. Nevertheless, the only relevant cummulant in the N = cc limit is the 
second one. In 121 it was shown that the higher cummulants appear only in higher-order 
terms in the I/N-expansion. 

- 

- 

2. The self-consistency equation 

The N-fold replicated partition function for a specific configuration of disorder is 

ZDN = 'DeexpH~ J 
with the Euclidean action (Hamiltonian) [1,2] 

+ tP(T)<?(T) + t ? ( M ( T )  + e;m:w 
+ ~o~T(T)W + e y )  + roe?(T)e:(T + ex) 

+ 6r:B(r)tP(T)t[(T +e,) -t 8f:fl(T)ty(T)tt(T + ex). (1) 

The are real Grassmann fields defined at the points T of a two-dimensional square lattice 
A = Z x Z, ex,y are the unit vectors in the two directions of the lattice. f g  = tanh JoJkT 
measures the average bond strength. The disorder variables 6r$ are statistically independent 
and Gaussian distributed with mean zero and variance ( i .  j = x ,  y )  
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one gets 

Applying the fennionic Wick theorem and averaging over the disorder fields to get the 
averaged Green function G'(T, T') = G'(r, T') leads to a closed loop of Go propagators 
with self-contacts. As was shown previously 121, the only terms contributing to order No 
have the tadpole structure. There are essentially four of them (i.e. eight for both axes), 
depicted in figure 1 and figure 2. The left graph of figure 1, for example, corresponds to 

__t_ 
a 

Figure 1. WO off-diagonal conuibutions to the propagator. coming from avusging over bond 
disorder in the y dinction. The lefl graph compnds  to equation (6). a and fl arc indices of 
ihe N colors. 0 is fixed whereas fl runs hnm 1 to N. 

a a 

Figure 2. WO diagonal contributions. These vanish if 4 = 0, 
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Therefore one deduces a (nonlinear) self-consistency equation including all tadpoles. 
Dropping the replica indices it reads 

with - 
1 = 2  2 = 1  3 = 4  4 = 3  

and 

The sign factor in (7) comes from an exchange of Grassmann variables in case of diagonal 
propagators in the loop (see figure 2). Equation (7) determines the 'selfenergy' of the 
effective Hamiltonian. In momentum space, one gets, together with H' = G"' and 
Ho = (Go)-', 

(8) Ho@) = H'@) + 8C@f. 

C is a 4 x 4 matrix 

with 

Now for x/y-symmetric disorder. cox = coy and the kernel of the Hamiltonian of the pure 
system is [ I ]  

with a = 1 - toe'py and b = 1 - loe'p,; to = tanh(l/ksT). Therefore, the most general 
ansatz compatible with the self-consistency equation is 

H'O, P) = H d t ,  P) + (12) 
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where 1 is the identity matrix. A non-vanishing q E R prevents H’ from getting eigenvalues 
= 0 for any value of p so that the divergency of the specific heat in the pure model vanishes. 
In a large-scale approximation, one recovers just the ‘extemally regularized‘ model of [3], 
where the possibility of the q-term was assumed for different reasom. In fact, a saddle- 
point calculation led to an q # 0 in a narrow region around the (shifted) critical temperature 
which corresponds to t = tc = ./? - 1. 

In the present consideration of the full lattice theory, the q-term is connected with 
the diagonal propagators of figure 2. These vanish if q = 0, because the pure Green 
function GE.(r, r) = 0. This is clear since we started from a Majormu field theory with 
real fermions. The q-term is forbidden within such a field theory. However, averaging 
over disorder gives non-zero contributions to the diagonal propagators of second order in 
the coupling g. However, as in [ 3 ] ,  the self-consistency condition allows for q # 0 only 
in a neighbourhood of the critical temperature. Eventually the model must correspond to 
an effectice Diruc field theory in this region which allows for the diagonal entries in H’. 
The breaking of the discrete symmetry in [31 can be understood as ‘spontaneous charge 
generation’ in going from real to complex fermions. 

In our approach the condition for a non-vanishing q deduced from (8) is 

q2+2+bb*  
det(q. t )  

= -g./d 

with 

det(q, f )  = det(2H’(q, t ) )  
= q4 + 4q2+ q2(1uI2 + lbl’) -4Re(u)Re(b) + lul21bI2 + 4. (14) 

This expression is minimal for t = f,; hence, there exists a region around the point f = tc 
determined by 

q2+bb‘+2 
’ = g . / d p  det(q,t) 

where q # 0. This equation, together with 

allows one to calculate q(ro,  g) and t (to, g) in this region. The phase boundaries to the 
‘outer phase’ with q = 0 are given by 

bb’ + 2 
I = g  d p  J 2  det(q = 0, t($, g))’ 

For q = 0, equation (16) leads to 

where F ( k z )  is the hypergeometric function and k = 4t(l - t Z ) / ( l  + t2)’. Figure 3 shows 
the effective t as a function of to and the two values t- and t+. In the next section it 
is shown that the spontaneous magnetization vanishes in the new phase characterized by 
q # 0. Therefore, t+ has to be viewed as the transition point from the ferromagnetic to the 
disordered phase. As expected, this leads to a lowered critical temperature. 
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F i r e  3. A two-propagator term in the expansion of ( e ~ p t ~ ~ e ) ~ , .  The horizontal tine 
indicates the henion of Ihe x-axis between Ihe WO spins. The d i swe  between W m  in units 
of the lanice spacing is n , 

3. The spontaneous magnetization in the disordered phase 

To get the spontaneous magnetization, we calculate the averaged spin-spin correlation 
function along the x axis, S(n) = (u(O)o(n)), for large values of the spin distance n 
measured in units of the latrice spacing. This quantity is related to the magnetization 
through the expression [l] 

- 

The discussion that follows has two limitations: 
(i) We use the effective Hamiltonian derived in section I ,  namely, the inverse of the 

disorder averaged Green function for the fermion operators. This leads to the omission of 
certain conhibutions to the averaged correlation function of the spin operators which are 
non-local in the fermions [I]. Nevertheless, this is correct within the N = 00 approximation 
because the omitted terms are of higher ordm in I / N .  For a specific configuration D of 
disorder, S D ( n )  can be written as a ratio of two partition functions [ I ]  

where in Zb the bonds along the x-axis between the sites (0,O) and (n, 0) are modified 
from &(& 0) to t;'(i, 0). This amounts to replacing ~HDC in the functional integral by 
t H ~ t  + itQ6 and 

Now (exp Q ~ ) z ,  is expanded (see [4]) in a series of closed loops of products of fermionic 
propagators attached to the line between (0.0) and ( n ,  0) (see figure 4). Averaging these 
quantities leads to contributions of the form depicted in figures 5, 6 and 7. If we replace 
f,(i.O) in formulae (20) and (21) by t and HD by H' as derived in section I ,  the graphs 
of figure 5 and 6 are counted but those of figure 7 are not However, only the first two 
are of order N o  in the I/N expansion. This corresponds to the fact that the level of 
renormalization-group treatment is not reached in this consideration of 'mean-field level', 
which is suitable to handle the non-trivial phase diagram of the problem. Nevertheless, 
the graphs of figure 7 can be factorized out of the contributions which are accounted for 
in the expansion of the averaged correlation function. Therefore, they cannot affect the 
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Figure 4. A term in the average of the expression (exp ftQ$)z,. taken into accOunt using the 
effective G’ of senion 1. a is a fixed replica index and 6 ms fmm I 10 N. 

Y P 
I I I I  I I I I I I  

0 n 

Figure 5. A term taken into acwunt by replacing ro by I .  f i  and y m from 1 to N ,  

Figure 6. A term which is omined in the N --t m approximation 

result of the calculation that follows, i.e. they cannot lead to a non-vanishing spontaneous 
magnetization in the new phase. 

(ii) The results are only valid in a small region around ti. i.e. for small q and well 
defined Go(t(t0. g)). In addition, we use Szeg6’s lemma [I ]  to evaluate the spincorrelation 
function of the associated ‘pure’ system, i.e. a system with modified coupling t instead 
of to. This gives results only in the n -+ 03 limit. Nevertheless, our result is applicable 
for large but finite n ,  because in the vicinity of I+ the strong ndependence of z(n) in 
the q # 0 region is multiplied by an almost constant factor coming from the non-vanishing 
spontaneous magnetization fort e tc. Moreover, the width of the region of validity depends 
only on I + .  not on n. The approximations made in the appendix only affect the analytical 
form of the dependence of the correlation lenght on q (see equation (37)). They have no 
influence on the qualitative behaviour of the averaged correlation function. Close to t+. our 
result is correct at least in the sense of the ‘scaling-limit’ results obtained in the pure model 
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1.0 r 
0.8 

0.6 

0 . 4  

0.2 

0.0 

.U 

- 
0 

P m P 
al 

0 P 
b P 

0 
0 

to  = tanh (a )  
F@re 7. The effective bond sangih r as a funciion of ra. Venia l  Lines denote r- = 0.18 and 
I+ = 0.71, respectively. the new phase lying belween Wan. The value of g is 0.3. 

[]I. 
Following [I], we write for the square of the disorder-averaged spin correlation function 

Q projects on the (3.4)- (i.e. horizontal) sector of the four fermions and is off-diagonal in 
the positlon space index, 

Q:,,(xt, Y I ;  X21 YZ) = S ~ . ~ ~ ~ . ~ ~ ~ ~ . X , + I X ( X I ) S ~ , . O B ~ . O  - ~ 1 . 4 ~ j . 3 ~ ~ ~ , ~ ~ + 1 ~ ~ ~ 2 ~ ~ y ~ , O ~ ~ . O  (23) 

and x ( x )  is the characteristic function on the interval [0, n ] .  Eventually, Q' projects G' on 
a 2(n + 1) x 2(n + 1)dimensional subspace. Therefore. we have to evaluate the determinant 
of the 2(n + 1) x 2(n + 1) matrix 

2 + ( I  - t)G'Q' (24) 

where 3 means the 2(n + 1)  x 2(n + 1)  matrix 

t 

0 j '0 ... I j. 
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Therefore, the determinant of (24) becomes 

det(C + (1 - r)Go(-qGo + qzGi)Q') (27) 

with 

C = tI + ( I  - t)GoQ'. (28) 

Eventually, the determinant factorizes to 
- 
S ( n )  =detCdet( l+ (1 -t)C-'Go(-tlGo+ qzCi)Q'). (29) 

The mahix C gives the averaged correlation function if q is absent. Because we are in the 
region where the effective coupling I is greater than tc, detC reaches a constant non-zero 
value in the limit n + 00: 

lim detC=[I--(sinhZp) -4 J 112 
n-tm 

B = tanh-'(t). Equation (30) gives the averaged square of the magnetization in the 'outer' 
phase, i.e. for f c t- or t t+. It leads to a non-vanishing magnetization for t > t+ 
as in the pure system, although the functional dependence of the effective t on to has 
to be taken into account. However& the framework of the N -+ m limit the averaged 
magnetization exhibits a finite jump at the point t+. This means that the phase transition 
from the magnetically ordered to the disordered state occurs at a temperature corresponding 
to t+. The spontaneous magnetization vanishes for I c f+, whereas it differs from zero for 
I > I,. To see this, we calculate the second determinant in (29) for 0 c q << 1. 

The block smcture of C is [ 11 

0 

A 0 
0 

bo ... b.-i 1 
1 b;-, ... b,' 
0 

0 
0 At 

where A is an II x n Toeplitz matrix with the elements 

where we choose the indices j ,  k to run from -(n - 1)/2 to (n - l)/2, and 

for j E [O,n - 11. f ( p )  is a unimodular function parametrized by t and its dual f, 
i = ( l  -?)/(I+!): 
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The second factor in equation (28) can now be written in the form 

The logarithm can be expanded in powers of q.  because we are not in the critical regime 
and therefore G&) is a bounded operator in its domain of definition and has finite operator 
nom. By an appropriate choice of q (close enough to zero), the expansion is well defined. 
In the first approximation, terms higher than quadratic are neglected. It is shown in the 
appendix that the term 

Tr(1 - t)C-’GiQ‘ 

which is proportional to q vanishes. and the term proportional to q2 is negative definite, 
yielding finally for large R 

where y( t )  is a positive constant depending on to and the disorder strenght g. Clearly, the 
disorder-averaged spin correlation function decays exponentially for an arbitrary non-zero 
value of q .  Eventually, the averaged spontaneous magnetization vanishes in the phase with 
VZO. 

4. Conclusions 

In this paper, the phase transition from the ferromagnetic ordered phase to the disorder- 
dominated phase in the two-dimensional random bond king model is investigated. Whereas 
in previous approaches [24] a large-scale approximation in the vicinity of an assumed 
critical region allowed to reduce the number of independent fermion degrees of freedom from 
four to two, we treat the full lattice theory in a self-consistent way in the framework of a I / N  
expansion. This expansion is not supposed to correspond to any special physical properties 
of the system but serves as a bookkeeping device, which allows one to extract the most 
important ‘mean field’ contributions usually omitted in renormalization-group approaches 
(i.e. tadpoles). The most general self-consistent ansatz for the effective Hamiltonian has the 
same structure as the saddle-point solution of the Q matrix theory [31, although the reason 
for introducing a possibly non-vanishing q is different: in the Q-matrix theory one uses 
supersymmetric fields and the q-term regularizes the integration over the bosons. After 
averaging over the disorder, q becomes non-zero in a certain region due to spontaneous 
symmetry breaking. The order parameter in the symmetry-broken phase can therefore be 
identified with q ,  leading to a continous phase transition from the ferromagnetic to the 
disorder-dominated phase as well as from this phase to the paramagnetic one. The question 
arises whether the spontanous magnetization in the new phase vanishes or not. To this 
end. we calculated the asymptotic behaviour (i.e. n + CO) of the disorder-averaged spin 
correlation function in a region around the transition line from the magnetic ordered phase to 
the new phase. Whereas the magnetization on the ferromagnetic side is finite, corresponding 
to T -= Tc, the correlation function decays exponentially 

- 
S(n) n. exp -n ,I$ 
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with 

This means that q2 plays the role of inverse correlation length. However, it is not clear what 
kind of operators become massless as : goes to infinity. The Q-matrix analysis shows a 
massless mode of the local composite Q operators at t+. Eventually, a rigorous RG treatment 
of the transition point has to deal with these objects. The temperature dependence of the 
magnetization in the ferromagnetic phase can be calculated by means of equations (1  8) and 
(30). The appearance of qz and not q in the expression for the averaged correlation function 
is due to the fact that the self-consistent equation allows two real solutions with q positive 
or negative, whereas the physics must not depend on the sign of q. This corresponds to 
the freedom of choosing the sign of the regularization term in the supersymmetric theory. 
If one relates the averaged asymptotic correlation function to the averaged square of the 
spontaneous magnetization in the usual way, it follows that the new phase shows no long- 
range magnetic order. Therefore, the only possibility to distinguish it from the paramagnetic 
region is to investigate the relaxational dynamics for the spins; this will be discussed 
elsewhere. However, the present paper says nothing about the transition from the new 
phase to the paramagnetic one. It is even possible that something happens in the new phase 
when the effective r reaches tc. In the framework of the N + 00 saddle-point calculation, 
the spontaneous magnetization exhibits a finite jump at the transition from the ordered to 
the new phase. Whether this remains correct after one takes fluctuations into account, can 
perhaps be answered via renormalization group treatment of the theory on the ferromagnetic 
side. 
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Appendix 

To calculate the term proportional to q in equation (36), we write Go@) as 

with 

(YI = b - b *  

u 2 = a a - a  

PI = (b  + b*) - abb' 

82 = (a + a') - baa' 

e = a b ' - 2  

S = a b - 2  
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and the conventions of equation (1 1). The (3.4)- (i.e. horizontal) sector of G;(p) then reads 

Therefore, GiQ' has the form 

(: :) 
where 0 and * are (n + 1) x (n + I) matices. Multiplication from the left with C-l yields 
a matrix with vanishing diagonal enties. It follows that the contribution proportional to 11 
vanishes. 

To calculate the quadratic term, we write 

Tr(C-'GiQ') = Tr(Gi(C - d)C-l) = %(Gi) - C(G:tiC-') ('w 
and 5 means the trace in the 2(n + 1) x 2(n + 1)dimensional subspace of the horizontal 
sector under consideration. To give an estimate for the matrix C-l, we use the fact that the 
matrix A in equation (31) is 'almost unitary', in the sense that 

1 
A A ~ = I + - B  n (A@ 

where B has bounded matrix elements. This is due to the fact that 

for a bounded function g ( p ) ,  and f(p) in equation (32) is of unit modulus. Then it is 
possible to write for C-I 

0 

0 
&-I 1 

0 

0 

... 

A 

with 

With the definition 

1 + -B' 
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for j ,  k E [O, n ] ,  we get 

(All) 

The contribution from the integral leads to at most an oscillating factor for the averaged 
spin-correlation function, but actually it vanishes due to the symmetry properties of h ( p )  
and f(p). It follows that the relevant contribution is the first term in equation (A5), namely 

(A12) T;c; = 2(n + l)Go,"n. 

Finally, one gets for the (positive definite) y ( r )  of equation (37) 
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